Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

نویسندگان

  • Emmanuel J. Candès
  • Justin K. Romberg
چکیده

In this paper, we develop a robust uncertainty principle for finite signals in C which states that for nearly all choices T,Ω ⊂ {0, . . . , N − 1} such that |T |+ |Ω| (logN)−1/2 ·N, there is no signal f supported on T whose discrete Fourier transform f̂ is supported on Ω. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T , then only a small percentage of the energy (less than half, say) of f̂ is concentrated on Ω. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids f(s) = ∑ t∈T α1(t)δ(s− t) + ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimally Sparse Fusion Frames: Existence and Construction

Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. In this paper, we introduce the notion of a sparse fusion frame, that is, a fusion frame whose subspaces are generated by orthonormal basis vectors that are sparse in a ‘uniform basis’ over all subspaces, thereby enabling low-complexity fusion frame decomposition...

متن کامل

Uncertainty principles and optimally sparse wavelet transforms

In this paper we introduce a new localization framework for wavelet transforms, such as the 1D wavelet transform and the Shearlet transform. Our goal is to design nonadaptive window functions that promote sparsity in some sense. For that, we introduce a framework for analyzing localization aspects of window functions. Our localization theory diverges from the conventional theory in two ways. Fi...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Developing Robust Project Scheduling Methods for Uncertain Parameters

A common problem arising in project management is the fact that the baseline schedule is often disrupted during the project execution because of uncertain parameters. As a result, project managers are often unable to meet the deadline time of the milestones. Robust project scheduling is an effective approach in case of uncertainty. Upon adopting this approach, schedules are protected against po...

متن کامل

Active control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method

Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2006